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Abstract 

Damped trend exponential smoothing models have gained importance in 
empirical studies due to their remarkable forecasting performance. This paper 
derives their theoretical forecast error variance, based on the implied ARIMA 
model, as algebraic function of the structural parameters. As a consequence, the 
minimum mean squared error (MMSE) forecasts as well as the h-step ahead 
theoretical forecast error variances can also be expressed as algebraic (and 
unique) functions of the structural parameters. Analytical results are provided for 
the random coefficient state space model, as introduced by McKenzie and 
Gardner (2010) “Damped trend exponential smoothing: A modeling viewpoint”, 
International Journal of Forecasting, 26 (4), 661-665, in the single source of error 
context. Moreover, algebraic results are also given for standard Holt-Winters 
(damped) trend models in the multiple sources of errors context.  
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1. Introduction 
The use of trend exponential smoothing models has been widely employed in forecasting 

time series. Those models, also known as Holt-Winters methods of exponential smoothing, have 
been further developed in the last twenty years. In particular, during the eighties, the pioneering 
contributions of Everette S. Gardner & Eddie Mckenzie suggested to damp the trend as the 
forecast horizon increases (see for example Gardner &Mckenzie 1985, 1988,1989). More 
specifically, given that forecasting a series into the future using a straight line is not necessarily 
appropriate, the authors suggested to add an autoregressive (damping) parameter. 
Subsequently, damped trend exponential smoothing models gained importance in empirical 
studies due to their remarkable forecasting properties. This is confirmed by Armstrong(2006), 
who recommended these models as they improve forecasting accuracy. In addition, Fildes, 
Nikolopous, Crone & Syntetos (2008) identify the damped trend as a benchmark model to beat. 
The importance of using damped trend is also recognized by Hyndman, Koehler, Ord & Snyder 
(2008). The choice of adding a damping parameter is particularly important from a modeling point 
of view. This is because the damping term makes the model extremely flexible in fitting the 
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dynamics of the series. More specifically, as described in Gardner and McKenzie(2011), the 
damped parameter can be interpreted as a measure of the persistence of different linear trends. 
Recently, McKenzie & Gardner (MG)(2010) suggest a random coefficient state space model. This 
model, as described below, has the same ARIMA(1,1,2) reduced form of the standard damped 
trend but it introduces further flexibility. 

Yet, despite the increasing development of the parametrization of those models, we still 
know little on the theoretical forecast error variance of (damped) trend exponential smoothing 
models. In other words, the lack of knowledge of the linkage between the ARIMA reduced form 
parameters and those belonging the data generation process (structural process) represents a 
clear gap. This paper fills this gap. In what follow an algebraic procedure that allows deriving the 
theoretical variance of different damped trend exponential smoothing models is shown. These 
algebraic results are relevant since they provide full control of the forecasting properties of the 
underlying models. The paper is organized as follows: Section 2 shows the algebraic results 
when the single source of error (SSOE) framework is adopted. More specifically, the linkages 
between the reduced form ARIMA parameters and those of the random coefficient state space 
models are fully described and discussed. Section 3 provides algebraic linkages when the 
multiple sources of errors (MSOE) framework is employed. In particular, the algebraic relations 
among the theoretical forecast error variances and the structural parameters of both trend and 
damped trend exponential smoothing are shown. 

2. SSOE  
This section reconsiders and extends the results as in MG. More specifically, the 

theoretical forecast error variance, based on the implied ARIMA model, is derived for the random 
coefficient state space model. Accordingly, the same notation as in MG is fully adopted. Here, 
results are shown in the context of SSOE. Yet, in the next section this assumption will be relaxed 
by allowing for the more general MSOE context. 

Consider the following error-correction form of a linear trend with additive errors: 
yt=lt-1+bt-1+Ԗt

lt=lt-1+bt-1 +ሺ1െαሻ
bt=bt-1 +ሺ1െβሻԖt

Ԗt         ... (1) 

Note that the coefficients of the innovations in the level and gradient equations are written 
slightly different compared with the standard notation adopted by the exponential smoothing 
literature. Yet, considering that this paper is an extension of MG, the same notation is fully 
adopted here. The damped version of the previous model can be expressed suchthat: 

yt=lt-1+Ԅbt-1+Ԗt

lt=lt-1+Ԅbt-1 +ሺ1െαሻ
bt=Ԅbt-1 +ሺ1െβሻԖt

Ԗt           ... (2) 

MG show both the parameters of the implied ARIMA(0,2,2) belonging to (1) and those of 
the ARIMA(1,1,2) belonging to (2) are trivial to derive. In addition, in both cases the error term of 
the ARIMA model corresponds to Ԗ௧ as in the error-correctionform. The random coefficient state-
space model can be expressed as follows: 
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yt=lt-1+Atbt-1+Ԗt

lt=lt-1+Atbt-1 +൫1െα*൯

bt=Atbt-1 +൫1െβ*൯Ԗt

Ԗt         ... (3) 

where At is a sequence of independent, identically distributed binary random variates with 
PሺAt=1ሻ=Ԅ and PሺAt=0ሻ=1-Ԅ. Note that (3) is a variant of the standard damped trend model. Yet, 
this model is particularly flexible since it is a stochastic mixture of standard linear trend and 
simple exponential smoothing (i.e. random walk plus noise) models. This feature is not only 
appealing from a modeling viewpoint, but it is also in line with Brown (1963) who argued that the 
parameters of the model may change from one segment to another one as processes are thought 
to be locally constant. 

The reduced form of (3) is a random coefficient ARIMA as follows: 

(1-AtB)zt=Ԗt-(α*+Atβ
*)Ԗt-1+Atα*Ԗt-2      ... (4) 

where B is the backshift operator and zt=(1-B)yt. In addition, after some algebra, the following 
autocovariances can be obtained: 

Eሺztztሻ=σԖ
2 ቆ൫1+α*2൯+Ԅ ቀ(1-β*)2-2α*൫1-β*൯ቁ +Ԅ2 ൬(1-β*)2

൫1-Ԅ൯
൰ቇ

E൫ztzt-1൯=σԖ
2 ቆ-α*+Ԅ൫1-β*൯-α*Ԅ2൫1-β*൯+Ԅ2 ൬(1-β*)2

൫1-Ԅ൯
൰ቇ

E൫ztzt-2൯=σԖ
2 ቆԄ2൫1-β*൯൫1-Ԅα*൯+Ԅ3 ൬(1-β*)2

൫1-Ԅ൯
൰ቇ

E൫ztzt-3൯=ԄE൫ztzt-2൯

     ... (5) 

Therefore, as shown by MG,ݖ௧ can be generated by the following stochastic difference 
equation (i.e. ARIMA(1,1,2)): 

൫1-ԄB൯zt=at+θ1at-1+θ2at-2       ... (6) 

Note that the variance of at is crucial since it is the theoretical forecast error variance of 
the random coefficient state space model. MG claim that the parameters of (6) are complicated 
functions of the four parameters of (3). Yet, using the algebraic procedure provided in the 
appendix, it can be shown that the moving average parameters of (6) are exact functions of α*; 
β*; Ԅ; σԖ

2.To see this, note that the autocovariance function of ሺ1 െ  :௧areݖሻܤ߶

γ0=൫1+Ԅ2൯Eሺztztሻ-2ԄE൫ztzt-1൯

γ1=൫1+Ԅ2൯E൫ztzt-1൯-ԄE൫ztzt-2൯-ԄE൫zt-1zt-1൯

γ2=E൫ztzt-2൯-ԄE൫zt-1zt-2൯=α*ԄσԖ
2

γk=0 for k≥3

     ... (7) 

At this stage,2 given the results in the Appendix, the autocovariances are sufficient to 
derive the ARIMA parameters. Thus: 

                                                 
2  For the sake of clarity, note that γ2=൫1+Ԅ2൯E ቀztzt-2ቁ -ԄE ቀztzt-3ቁ -ԄE ቀzt-1zt-2ቁ, but given that 

E ቀztzt-3ቁ =ԄE ቀztzt-2ቁ, it collapses to σԖ
2Ԅα*. 
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θ2= α*ԄσԖ2

σa
2

θ1=
൫1+Ԅ2൯Eቀztzt-1ቁ-ԄEቀztzt-2ቁ-ԄE(zt-1zt-1)

α*ԄσԖ
2+σa

2

       ... (8) 

with: 

σa
2= 1

4
(γ0-2γ0+G+√2ටγ0

2+γ0G-2 ቀγ1
2+γ2൫2γ2+G൯ቁ     ... (9) 

And 

G=ට(γ0-2γ1+2γ2)(γ0+2γ1+2γ2)       ... (10) 

where E(ztzt), E(ztzt-1) and E(ztzt-2) are those provided in (5). These expressions give full control 
of the theoretical variance of the random coefficient state space model.3 As a consequence, the 
minimum mean squared error (MMSE) forecasts as well as the h-step ahead theoretical forecast 
error variance are also algebraic functions of the error-correction parameters. 

Interestingly, the algebraic expression of ߪ
ଶcan be used to derive the set of parameters 

that allows to obtain the following equality σa
ఢߪ=2

ଶ. This set is shown in Figure 1. More specifically, 
each point shown in Figure 1 is a combination of α*, β*and Ԅ that yields σa

2=σԖ
2. This finding 

implies that it is not necessarily true that, as claimed by MG, the moving average parameters in 
(6) must be different from those of the error-correction specification as in (3). 

In empirical applications, one might be interested in comparing the implied parameters as 
in (8) and (9) with the ARMA estimated parameters. A similar exercise was carried out for 
example in Morley, Nelson & Zivot (2003) to compare the Beveridge-Nelson decomposition with 
unobserved components models. 

3. MSOE 
The previous section has focused on exponential smoothing processes assuming the 

single source of error framework. This section shows that, even in the context of multiple sources 
of errors, it is possible to derive the theoretical variance of standard (damped) trend exponential 
smoothing processes. First, algebraic results are provided for the damped trend exponential 
smoothing. Subsequently, results are given for the standard Holt-Winters methods. 

Consider the following MSOE version of the damped trend exponential smoothing: 
yt=lt-1+Ԅbt-1+Ԗt

lt=lt-1+Ԅbt-1+(1+α)ξt
bt=Ԅbt-1+(1+β)ηt

        ... (11) 

This specification differs from (2) since the model is characterized by three different 
shocks. The reduced form of (11) can be written as: 

൫1-ԄB൯൫1-B൯yt=Ԗt-ሺ1+ԄሻԖt-1+ԄԖt-2+ሺ1+αሻ ቀξt-1-Ԅξt-2ቁ +Ԅ(1+β)ηt-1   ... (12) 

                                                 
3  An Eviews 7 program containing a simulation running the whole procedure can be provided by the 

author upon request. In addition, an Excel file computing the autocovariances as in (5) as well as the 
moving average parameters, given the error-correction parameters, is also available upon request. 
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Figure 1. Region of parameters (Ԅ; α*;β*) allowing σԖ
2=σa

2 
 
having the following autocovariance functions: 

γ0=൫1+ሺ1+Ԅሻ2+Ԅ2൯σԖ
2+((1+α)2+൫Ԅሺ1+αሻ)2൯σξ2+(Ԅ(1+β))2ση2

γ1=-ሺ1+Ԅሻσε2-Ԅሺ1+Ԅሻσε2-Ԅ(1+α)2σξ2

γ2=ԄσԖ
2

γk=0 for k≥3

   ... (13) 

Therefore: 

θ2= ԄσԖ2

σa
2

θ1=
-ሺ1+ԄሻσԖ2-Ԅሺ1+ԄሻσԖ2-Ԅ(1+α)2σξ

2

ԄσԖ
2+σa

2

       ... (14) 

with: 

σa
2=

1
4

[2σԖ
2+2σԖ

2Ԅ2+ση2Ԅ2+2ση2β
2Ԅ2+ση2βԄ2+ሺ1+αሻ2൫1+Ԅ2൯σξ2+H+ 

1
2

[-σԖ
4-6σԖ

4Ԅ2-4σԖ
2σξ2Ԅ2-8ασԖ

2σξ2Ԅ2-4α2σԖ
2σξ2Ԅ2-σԖ

4Ԅ4+
1
2

H 

-σξ4Ԅ2൫1+4α+6α2+4α3+α4൯+2σԖ
2ση2Ԅ3൫1+2β+2β2൯+M 
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+ 1
2

M2]
1
2]          ... (15) 

and 

H=[(1+α)2σξ2(-1+Ԅ)2+(1+β)2ση2Ԅ2]
1
2[(1+β)2ση2Ԅ2+  

4σԖ
2(1+Ԅ)2+(1+α)2σξ2(1+Ԅ)2]

1
2       ... (16) 

M=(1+β)2ση2Ԅ2+2σԖ
2൫1+Ԅ2൯+(1+α)2σξ2(1+Ԅ2)     ... (17) 

Note that when Ԅ=1 the damped trend (11) collapses to the standard Holt-Winters trend 
model whose reduced form is: 

(1-B)2yt=Ԗt(1-B)2+ሺ1+αሻ ቀξt-1-ξt-2ቁ +(1+β)ηt-1     ... (18) 

With autocovariance functions:  

γ0=6σԖ
2+2(1+α)2σξ2+(1+β)2ση2

γ1=-4σԖ
2-(1+α)2σξ2

γ2=σԖ
2

γk=0 for k≥3

       ... (19) 

Such that: 

θ2= σԖ2

σa
2

θ1=
-4σԖ2-(1+α)2σξ

2

σԖ
2+σa

2

         ... (20) 

with:  
 

σa
2=σԖ

2 + 
1
2
σξ2(1+α)2 + 

1
4
σηሺ1+βሻJ + 

1
4
ση2(1+β)2 + 

√2
4

[ση4(1+β)4 + 4(1+α)2(1+β)2ση2σξ2 + 

2(1+α)4σξ4+(1+β)3ση3J+2(1+α)2ሺ1+βሻσησξ2J  

+4σԖ
2 ቀ2(1+α)2σξ2+σηሺ1+βሻ൫3σηሺ1+βሻ+J൯ቁ ]

1
2     ... (21) 

and 

J=ට16σԖ
2+(1+β)2ση2+4(1+α)2σξ2       ... (22) 

Therefore, once the parameters of the error-correction form are obtained, the forecasting 
performance of the model can be computed instantaneously. To conclude, these results shed 
light on the forecasting properties of damped trend exponential smoothing models. More 
specifically, even in the MSOE context we have full control of the reduced form parameters and 
thus on the MMSE forecasts relative to the data generation process.   

4. Conclusions 
As recognized in Gardner (2006), the damped trend exponential smoothing has gained 

importance in empirical studies due to its remarkable forecasting performance. This paper derives 
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its theoretical forecast error variance based on the implied ARIMA model. Algebraic results are 
provided for the standard Holt-Winters trend models, the damped trend exponential smoothing 
and for the random coefficient state space model. These algebraic results are relevant since they 
provide full control of the ARIMA reduced form parameters as exact functions of the structural 
parameters of the underlying models.   
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APPENDIX 
Let ݖ௧be an invertible moving average processes of order two such that: 
zt=et+θ1et-1+θ2et-2  

where et is white noise process. Considering the following autocovariance functions: Where 
γ0=E(ztzt), γ1=E(ztzt-1) andγ2=E(ztzt-2). The moving average parameters can be recovered solving 
the following system of three equations (autocorrelations): 

γ2
γ1

= θ2

(1+θ1
2+θ2

2)
γ1
γ0

= θ1+θ1θ2

(1+θ1
2+θ2

2)

σe
2= γ0

(1+θ1
2+θ2

2)

  

These equations represent respectively the second and first order autocorrelations of the 
process and the variance of et.  

First, the following analytical solutions can be easily obtained: 

θ2= γ2
σe

2

θ1= γ1
(σe

2+γ2)

  

Secondly, substituting these solutions in the last equation of the system, the following 
quartic equation in x (with x=σe

2) can be obtained:  
x4+൫2γ2-γ0൯x3+൫2γ2

2-2γ2γ0+γ1
2൯x2+൫2γ2

3-γ2
2γ0൯x+γ2

4

x(x+γ2)2
=0  

This equation has four different solutions. Yet, the only solution leading to the invertible 
process4 is:  

σe
2= 1

4
(γ0-2γ2+G+√2ටγ0

2+γ0G-2 ቀγ1
2+γ2൫2γ2+G൯ቁ )      ... (23ሻ 

with: 

G=ට(γ0-2γ1+2γ2)(γ0+2γ1+2γ2)              ... (24ሻ 

and: 

θ2= 4γ2

(γ0-2γ2+G+√2ටγ0
2+γ0G-2ቀγ1

2+γ2൫2γ2+G൯ቁ)

θ1= 4γ1

(γ0+2γ2+G+√2ටγ0
2+γ0G-2ቀγ1

2+γ2൫2γ2+G൯ቁ)

                  ... (25ሻ 

Similar results can be found in Sbrana (2011, 2012). 

♦♦♦ 

                                                 
4  A process with roots of the characteristic function that lie outside the unit circle (i.e. θ1+θ2<1; θ2-θ2<1; -1 

< θ2<1 


